#define L 10

I{naln() 0010011000110001

int i,k,r[L]; 1000111011001010
for(i=0;i<L;i++) {

1101010010101001
k = 3*%i+2; 1010101010101111
rfi] = k*k; 1010100111111111

0101010101010101

ot il binary file
text file

Languages & Compilers

From source code to executable
code

T —

Marco Maggini Language Processing
Technologies

The compiler

- It is a software program that

= Translates a program written in a high level
programming language into an equivalent object code
= ..or.. reports the errors present in the source code

» In the ‘50: development of the first techniques to
translate mathematical formulas into machine
language

- The first Fortran compiler required 18 man-years of
development (1957)

- Systematic techniques for the development of
compilers have been devised

e —

Marco Maggini Language Processing
Technologies

Source and object languages

 There are... hundreds of programming languages

= General purpose programming languages

 C, C++, Pascal, Fortran, Java, Basic, Lisp, Prolog, perl....
= Special purpose languages

- Text formatting (Tex, Latex...)

- Database management and querying (SQL)

- The compiler translates the source language into
= Another high-level programming language
= e.g. pascal -> C
= The machine code for a given processor/architecture

—

Marco Maggini Language Processing
Technologies

Parsing and generation

 Parsing
= The source code is split into its components

= An intermediate representation of the program
structure is built in memory (Syntatic tree)

VRN
X = A+B*C x4 .,
VAN
B C
 (Generation

= The object code is obtained from the intermediate
representation

T —

Marco Maggini Language Processing
Technologies

The compiler “context”

Source code skeleton
v

preprocessor include, define (macro)

v
source Program

compiler

v
assemb+ly code

assembler

v
objecf code

libreries——— linker/loader

v
executable code

Marco Maggini Language Processing
Technologies

Compiler structure

lexical analysis

A

syntactic analysis

semantical analysis

!

symbol table intermediate code error handling
generation

'

optimization

\ 4

object code
generation

e —

Marco Maggini Language Processing
Technologies

Lexical analysi (scanning)

- Groups character into words, numbers or symbols

= The source text is mappend into a sequence of lexical
elements (token)

- language reserved words (keywords) [if - for - while - class]

- user defined identifiers [variable, procedure, function
names ...]

- costants [numbers, strings, ... |
- Logic an arithmetic operators [+ * ...]
- statement separator characters [,]

int] lsommd | [aiff]/=/[0.3]]

Marco Maggini Language Processing
Technologies

Syntatic Analyis (parsing)

» Groups tokens into grammatical phrases

= The syntatic tree represents the program structure
- leaves contain tokens
- internal nodes represent syntactical categories

assignment
statement
- - '" / | \
identifier = expression
| _— |
/ * H
_ B XDIESSION expression
/derllt/f/er exp. ?SS ©
B identifier number

C 60

Marco Maggini Language Processing
Technologies

Syntatic rules

- The hierachical structure of a program is expressed
by recursive rules

= Each identifier is an expression
= Each number is an expression
= If expri and expr2 are expressions then also

* expri + expr2

* expril * expr2 recursive rules
(expri)

} base rules

are expressions

e —T

Marco Maggini Language Processing
Technologies

Sematical analysis

- Yields the sematics associated to the syntatic structure

o It verifies that the usage rules of the language are satisfied
- identifier declarations (e.g. duplicate definitions,...)

- type check (compatibility of types in expressions, automatic
type conversion, type check for vector indexes, ecc..)

*
int D; / \
C

int-to-float
float C; B T \

D type conversion function
int -> float

E—

Marco Maggini Language Processing
Technologies

Symbol table

- It memorizes the identifiers and their associated attributes
= memory allocation
o type
= visibility scope
» number and type of function/procedure arguments

memory allocation

Name Type offset «—
A int 0
B float 4
C double 8
I int 16
J int 20

|

Marco Maggini Language Processing
Technologies

Object code generation

ST
internal intermediate ¥4 T~
representation id, T
id, int-to-float
|
1 60
]] tl = int-to-float(60)
intermediate code t2 = id3 * tl
generation t3 = id2 + t2
idl = t3
code optimization tl = id3 * 60.0

idl = id2 + t1

i

object code MOVF id3, R2
generation MULF #60.0, R2

